| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( 𝑅 ↾ 𝐴 ) |
| 2 |
|
dfdisjALTV4 |
⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ∧ Rel ( 𝑅 ↾ 𝐴 ) ) ) |
| 3 |
1 2
|
mpbiran2 |
⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ) |
| 4 |
|
brres |
⊢ ( 𝑥 ∈ V → ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) ) |
| 5 |
4
|
elv |
⊢ ( 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 6 |
5
|
mobii |
⊢ ( ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 7 |
|
df-rmo |
⊢ ( ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ 𝐴 ∧ 𝑢 𝑅 𝑥 ) ) |
| 8 |
6 7
|
bitr4i |
⊢ ( ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑢 𝑢 ( 𝑅 ↾ 𝐴 ) 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 10 |
3 9
|
bitri |
⊢ ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) |
| 11 |
|
id |
⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) |
| 12 |
11
|
inecmo |
⊢ ( Rel 𝑅 → ( ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ↔ ∀ 𝑥 ∃* 𝑢 ∈ 𝐴 𝑢 𝑅 𝑥 ) ) |
| 13 |
10 12
|
bitr4id |
⊢ ( Rel 𝑅 → ( Disj ( 𝑅 ↾ 𝐴 ) ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ 𝐴 ( 𝑢 = 𝑣 ∨ ( [ 𝑢 ] 𝑅 ∩ [ 𝑣 ] 𝑅 ) = ∅ ) ) ) |