Metamath Proof Explorer


Theorem disjres

Description: Disjoint restriction. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjres RelRDisjRAuAvAu=vuRvR=

Proof

Step Hyp Ref Expression
1 relres RelRA
2 dfdisjALTV4 DisjRAx*uuRAxRelRA
3 1 2 mpbiran2 DisjRAx*uuRAx
4 brres xVuRAxuAuRx
5 4 elv uRAxuAuRx
6 5 mobii *uuRAx*uuAuRx
7 df-rmo *uAuRx*uuAuRx
8 6 7 bitr4i *uuRAx*uAuRx
9 8 albii x*uuRAxx*uAuRx
10 3 9 bitri DisjRAx*uAuRx
11 id u=vu=v
12 11 inecmo RelRuAvAu=vuRvR=x*uAuRx
13 10 12 bitr4id RelRDisjRAuAvAu=vuRvR=