Metamath Proof Explorer


Theorem disjorimxrn

Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion disjorimxrn
|- ( ( Disj R \/ Disj S ) -> Disj ( R |X. S ) )

Proof

Step Hyp Ref Expression
1 dfdisjALTV2
 |-  ( Disj R <-> ( ,~ `' R C_ _I /\ Rel R ) )
2 1 simplbi
 |-  ( Disj R -> ,~ `' R C_ _I )
3 dfdisjALTV2
 |-  ( Disj S <-> ( ,~ `' S C_ _I /\ Rel S ) )
4 3 simplbi
 |-  ( Disj S -> ,~ `' S C_ _I )
5 2 4 orim12i
 |-  ( ( Disj R \/ Disj S ) -> ( ,~ `' R C_ _I \/ ,~ `' S C_ _I ) )
6 inss
 |-  ( ( ,~ `' R C_ _I \/ ,~ `' S C_ _I ) -> ( ,~ `' R i^i ,~ `' S ) C_ _I )
7 5 6 syl
 |-  ( ( Disj R \/ Disj S ) -> ( ,~ `' R i^i ,~ `' S ) C_ _I )
8 disjxrn
 |-  ( Disj ( R |X. S ) <-> ( ,~ `' R i^i ,~ `' S ) C_ _I )
9 7 8 sylibr
 |-  ( ( Disj R \/ Disj S ) -> Disj ( R |X. S ) )