Metamath Proof Explorer


Theorem disjorimxrn

Description: Disjointness condition for range Cartesian product. (Contributed by Peter Mazsa, 12-Jul-2020) (Revised by Peter Mazsa, 22-Sep-2021)

Ref Expression
Assertion disjorimxrn Disj R Disj S Disj R S

Proof

Step Hyp Ref Expression
1 dfdisjALTV2 Disj R R -1 I Rel R
2 1 simplbi Disj R R -1 I
3 dfdisjALTV2 Disj S S -1 I Rel S
4 3 simplbi Disj S S -1 I
5 2 4 orim12i Disj R Disj S R -1 I S -1 I
6 inss R -1 I S -1 I R -1 S -1 I
7 5 6 syl Disj R Disj S R -1 S -1 I
8 disjxrn Disj R S R -1 S -1 I
9 7 8 sylibr Disj R Disj S Disj R S