Metamath Proof Explorer


Theorem eldmqsres2

Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 22-Aug-2020)

Ref Expression
Assertion eldmqsres2 B V B dom R A / R A u A x u R B = u R

Proof

Step Hyp Ref Expression
1 eldmqsres B V B dom R A / R A u A x x u R B = u R
2 df-rex x u R B = u R x x u R B = u R
3 19.41v x x u R B = u R x x u R B = u R
4 2 3 bitri x u R B = u R x x u R B = u R
5 4 rexbii u A x u R B = u R u A x x u R B = u R
6 1 5 bitr4di B V B dom R A / R A u A x u R B = u R