Metamath Proof Explorer


Theorem qsss1

Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)

Ref Expression
Assertion qsss1 A B A / C B / C

Proof

Step Hyp Ref Expression
1 ssrexv A B x A y = x C x B y = x C
2 1 ss2abdv A B y | x A y = x C y | x B y = x C
3 df-qs A / C = y | x A y = x C
4 df-qs B / C = y | x B y = x C
5 2 3 4 3sstr4g A B A / C B / C