Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
qsss1
Next ⟩
qseq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
qsss1
Description:
Subclass theorem for quotient sets.
(Contributed by
Peter Mazsa
, 12-Sep-2020)
Ref
Expression
Assertion
qsss1
⊢
A
⊆
B
→
A
/
C
⊆
B
/
C
Proof
Step
Hyp
Ref
Expression
1
ssrexv
⊢
A
⊆
B
→
∃
x
∈
A
y
=
x
C
→
∃
x
∈
B
y
=
x
C
2
1
ss2abdv
⊢
A
⊆
B
→
y
|
∃
x
∈
A
y
=
x
C
⊆
y
|
∃
x
∈
B
y
=
x
C
3
df-qs
⊢
A
/
C
=
y
|
∃
x
∈
A
y
=
x
C
4
df-qs
⊢
B
/
C
=
y
|
∃
x
∈
B
y
=
x
C
5
2
3
4
3sstr4g
⊢
A
⊆
B
→
A
/
C
⊆
B
/
C