Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsss1 | |- ( A C_ B -> ( A /. C ) C_ ( B /. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv | |- ( A C_ B -> ( E. x e. A y = [ x ] C -> E. x e. B y = [ x ] C ) ) |
|
| 2 | 1 | ss2abdv | |- ( A C_ B -> { y | E. x e. A y = [ x ] C } C_ { y | E. x e. B y = [ x ] C } ) |
| 3 | df-qs | |- ( A /. C ) = { y | E. x e. A y = [ x ] C } |
|
| 4 | df-qs | |- ( B /. C ) = { y | E. x e. B y = [ x ] C } |
|
| 5 | 2 3 4 | 3sstr4g | |- ( A C_ B -> ( A /. C ) C_ ( B /. C ) ) |