Metamath Proof Explorer


Theorem qsss1

Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)

Ref Expression
Assertion qsss1
|- ( A C_ B -> ( A /. C ) C_ ( B /. C ) )

Proof

Step Hyp Ref Expression
1 ssrexv
 |-  ( A C_ B -> ( E. x e. A y = [ x ] C -> E. x e. B y = [ x ] C ) )
2 1 ss2abdv
 |-  ( A C_ B -> { y | E. x e. A y = [ x ] C } C_ { y | E. x e. B y = [ x ] C } )
3 df-qs
 |-  ( A /. C ) = { y | E. x e. A y = [ x ] C }
4 df-qs
 |-  ( B /. C ) = { y | E. x e. B y = [ x ] C }
5 2 3 4 3sstr4g
 |-  ( A C_ B -> ( A /. C ) C_ ( B /. C ) )