Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | qsss1 | |- ( A C_ B -> ( A /. C ) C_ ( B /. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | |- ( A C_ B -> ( E. x e. A y = [ x ] C -> E. x e. B y = [ x ] C ) ) |
|
2 | 1 | ss2abdv | |- ( A C_ B -> { y | E. x e. A y = [ x ] C } C_ { y | E. x e. B y = [ x ] C } ) |
3 | df-qs | |- ( A /. C ) = { y | E. x e. A y = [ x ] C } |
|
4 | df-qs | |- ( B /. C ) = { y | E. x e. B y = [ x ] C } |
|
5 | 2 3 4 | 3sstr4g | |- ( A C_ B -> ( A /. C ) C_ ( B /. C ) ) |