Metamath Proof Explorer


Theorem qsss1

Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)

Ref Expression
Assertion qsss1 ( 𝐴𝐵 → ( 𝐴 / 𝐶 ) ⊆ ( 𝐵 / 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝐶 → ∃ 𝑥𝐵 𝑦 = [ 𝑥 ] 𝐶 ) )
2 1 ss2abdv ( 𝐴𝐵 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝐶 } ⊆ { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = [ 𝑥 ] 𝐶 } )
3 df-qs ( 𝐴 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = [ 𝑥 ] 𝐶 }
4 df-qs ( 𝐵 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦 = [ 𝑥 ] 𝐶 }
5 2 3 4 3sstr4g ( 𝐴𝐵 → ( 𝐴 / 𝐶 ) ⊆ ( 𝐵 / 𝐶 ) )