Description: Subclass theorem for quotient sets. (Contributed by Peter Mazsa, 12-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | qsss1 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 / 𝐶 ) ⊆ ( 𝐵 / 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 → ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 ) ) | |
2 | 1 | ss2abdv | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 } ⊆ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 } ) |
3 | df-qs | ⊢ ( 𝐴 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 } | |
4 | df-qs | ⊢ ( 𝐵 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 } | |
5 | 2 3 4 | 3sstr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 / 𝐶 ) ⊆ ( 𝐵 / 𝐶 ) ) |