Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
eldmres3
Next ⟩
eceq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldmres3
Description:
Elementhood in the domain of a restriction.
(Contributed by
Peter Mazsa
, 23-Nov-2025)
Ref
Expression
Assertion
eldmres3
⊢
B
∈
V
→
B
∈
dom
⁡
R
↾
A
↔
B
∈
A
∧
B
R
≠
∅
Proof
Step
Hyp
Ref
Expression
1
eldmres2
⊢
B
∈
V
→
B
∈
dom
⁡
R
↾
A
↔
B
∈
A
∧
∃
y
y
∈
B
R
2
n0
⊢
B
R
≠
∅
↔
∃
y
y
∈
B
R
3
2
anbi2i
⊢
B
∈
A
∧
B
R
≠
∅
↔
B
∈
A
∧
∃
y
y
∈
B
R
4
1
3
bitr4di
⊢
B
∈
V
→
B
∈
dom
⁡
R
↾
A
↔
B
∈
A
∧
B
R
≠
∅