Metamath Proof Explorer


Theorem eldmres3

Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eldmres3
|- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ [ B ] R =/= (/) ) ) )

Proof

Step Hyp Ref Expression
1 eldmres2
 |-  ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ E. y y e. [ B ] R ) ) )
2 n0
 |-  ( [ B ] R =/= (/) <-> E. y y e. [ B ] R )
3 2 anbi2i
 |-  ( ( B e. A /\ [ B ] R =/= (/) ) <-> ( B e. A /\ E. y y e. [ B ] R ) )
4 1 3 bitr4di
 |-  ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ [ B ] R =/= (/) ) ) )