Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmres3 | |- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ [ B ] R =/= (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres2 | |- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ E. y y e. [ B ] R ) ) ) |
|
| 2 | n0 | |- ( [ B ] R =/= (/) <-> E. y y e. [ B ] R ) |
|
| 3 | 2 | anbi2i | |- ( ( B e. A /\ [ B ] R =/= (/) ) <-> ( B e. A /\ E. y y e. [ B ] R ) ) |
| 4 | 1 3 | bitr4di | |- ( B e. V -> ( B e. dom ( R |` A ) <-> ( B e. A /\ [ B ] R =/= (/) ) ) ) |