Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldmres3 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmres2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) ) | |
| 2 | n0 | ⊢ ( [ 𝐵 ] 𝑅 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) | |
| 3 | 2 | anbi2i | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ↔ ( 𝐵 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) |
| 4 | 1 3 | bitr4di | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) ) |