Metamath Proof Explorer


Theorem eldmres3

Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eldmres3 ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 eldmres2 ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) ) )
2 n0 ( [ 𝐵 ] 𝑅 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 )
3 2 anbi2i ( ( 𝐵𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ↔ ( 𝐵𝐴 ∧ ∃ 𝑦 𝑦 ∈ [ 𝐵 ] 𝑅 ) )
4 1 3 bitr4di ( 𝐵𝑉 → ( 𝐵 ∈ dom ( 𝑅𝐴 ) ↔ ( 𝐵𝐴 ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )