Metamath Proof Explorer


Theorem elecg

Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion elecg AVBWABRBRA

Proof

Step Hyp Ref Expression
1 elimasng BWAVARBBAR
2 1 ancoms AVBWARBBAR
3 df-ec BR=RB
4 3 eleq2i ABRARB
5 df-br BRABAR
6 2 4 5 3bitr4g AVBWABRBRA