Metamath Proof Explorer


Theorem elecxrn

Description: Elementhood in the ( R |X. S ) -coset of A . (Contributed by Peter Mazsa, 18-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion elecxrn A V B A R S x y B = x y A R x A S y

Proof

Step Hyp Ref Expression
1 xrnrel Rel R S
2 relelec Rel R S B A R S A R S B
3 1 2 ax-mp B A R S A R S B
4 brxrn2 A V A R S B x y B = x y A R x A S y
5 3 4 syl5bb A V B A R S x y B = x y A R x A S y