Metamath Proof Explorer


Theorem elecxrn

Description: Elementhood in the ( R |X. S ) -coset of A . (Contributed by Peter Mazsa, 18-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion elecxrn ( 𝐴𝑉 → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ ∃ 𝑥𝑦 ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝐴 𝑅 𝑥𝐴 𝑆 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 xrnrel Rel ( 𝑅𝑆 )
2 relelec ( Rel ( 𝑅𝑆 ) → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ 𝐴 ( 𝑅𝑆 ) 𝐵 ) )
3 1 2 ax-mp ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ 𝐴 ( 𝑅𝑆 ) 𝐵 )
4 brxrn2 ( 𝐴𝑉 → ( 𝐴 ( 𝑅𝑆 ) 𝐵 ↔ ∃ 𝑥𝑦 ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝐴 𝑅 𝑥𝐴 𝑆 𝑦 ) ) )
5 3 4 syl5bb ( 𝐴𝑉 → ( 𝐵 ∈ [ 𝐴 ] ( 𝑅𝑆 ) ↔ ∃ 𝑥𝑦 ( 𝐵 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝐴 𝑅 𝑥𝐴 𝑆 𝑦 ) ) )