Metamath Proof Explorer


Theorem elecxrn

Description: Elementhood in the ( R |X. S ) -coset of A . (Contributed by Peter Mazsa, 18-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)

Ref Expression
Assertion elecxrn AVBARSxyB=xyARxASy

Proof

Step Hyp Ref Expression
1 xrnrel RelRS
2 relelec RelRSBARSARSB
3 1 2 ax-mp BARSARSB
4 brxrn2 AVARSBxyB=xyARxASy
5 3 4 bitrid AVBARSxyB=xyARxASy