Metamath Proof Explorer


Theorem eleldisjseldisj

Description: The element of the disjoint elements class and the disjoint elementhood predicate are the same, that is ( A e. ElDisjs <-> ElDisj A ) when A is a set. (Contributed by Peter Mazsa, 23-Jul-2023)

Ref Expression
Assertion eleldisjseldisj AVAElDisjsElDisjA

Proof

Step Hyp Ref Expression
1 eleldisjs AVAElDisjsE-1ADisjs
2 cnvepresex AVE-1AV
3 eldisjsdisj E-1AVE-1ADisjsDisjE-1A
4 2 3 syl AVE-1ADisjsDisjE-1A
5 1 4 bitrd AVAElDisjsDisjE-1A
6 df-eldisj ElDisjADisjE-1A
7 5 6 bitr4di AVAElDisjsElDisjA