Metamath Proof Explorer


Theorem elfz0lmr

Description: A member of a finite interval of nonnegative integers is either 0 or its upper bound or an element of its interior. (Contributed by AV, 5-Feb-2021)

Ref Expression
Assertion elfz0lmr K0NK=0K1..^NK=N

Proof

Step Hyp Ref Expression
1 elfzlmr K0NK=0K0+1..^NK=N
2 biid K=0K=0
3 0p1e1 0+1=1
4 3 oveq1i 0+1..^N=1..^N
5 4 eleq2i K0+1..^NK1..^N
6 biid K=NK=N
7 2 5 6 3orbi123i K=0K0+1..^NK=NK=0K1..^NK=N
8 1 7 sylib K0NK=0K1..^NK=N