Metamath Proof Explorer


Theorem eliind

Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses eliind.a φAxBC
eliind.k φKB
eliind.d x=KACAD
Assertion eliind φAD

Proof

Step Hyp Ref Expression
1 eliind.a φAxBC
2 eliind.k φKB
3 eliind.d x=KACAD
4 eliin AxBCAxBCxBAC
5 1 4 syl φAxBCxBAC
6 1 5 mpbid φxBAC
7 3 6 2 rspcdva φAD