Metamath Proof Explorer


Theorem elintima

Description: Element of intersection of images. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion elintima yx|aAx=aBaAbBbya

Proof

Step Hyp Ref Expression
1 vex yV
2 1 elint2 yx|aAx=aBzx|aAx=aByz
3 elequ2 z=xyzyx
4 3 ralab2 zx|aAx=aByzxaAx=aByx
5 df-rex aAx=aBaaAx=aB
6 5 imbi1i aAx=aByxaaAx=aByx
7 19.23v aaAx=aByxaaAx=aByx
8 simpr aAx=aBx=aB
9 8 eleq2d aAx=aByxyaB
10 9 pm5.74i aAx=aByxaAx=aByaB
11 1 elima yaBbBbay
12 df-br baybya
13 12 rexbii bBbaybBbya
14 11 13 bitri yaBbBbya
15 14 imbi2i aAx=aByaBaAx=aBbBbya
16 10 15 bitri aAx=aByxaAx=aBbBbya
17 16 albii aaAx=aByxaaAx=aBbBbya
18 6 7 17 3bitr2i aAx=aByxaaAx=aBbBbya
19 18 albii xaAx=aByxxaaAx=aBbBbya
20 19.23v xaAx=aBbBbyaxaAx=aBbBbya
21 vex aV
22 21 imaex aBV
23 22 isseti xx=aB
24 19.42v xaAx=aBaAxx=aB
25 23 24 mpbiran2 xaAx=aBaA
26 25 imbi1i xaAx=aBbBbyaaAbBbya
27 20 26 bitri xaAx=aBbBbyaaAbBbya
28 27 albii axaAx=aBbBbyaaaAbBbya
29 alcom xaaAx=aBbBbyaaxaAx=aBbBbya
30 df-ral aAbBbyaaaAbBbya
31 28 29 30 3bitr4i xaaAx=aBbBbyaaAbBbya
32 19 31 bitri xaAx=aByxaAbBbya
33 4 32 bitri zx|aAx=aByzaAbBbya
34 2 33 bitri yx|aAx=aBaAbBbya