Metamath Proof Explorer


Theorem ralab2

Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015) Drop ax-8 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis ralab2.1 x=yψχ
Assertion ralab2 xy|φψyφχ

Proof

Step Hyp Ref Expression
1 ralab2.1 x=yψχ
2 df-ral xy|φψxxy|φψ
3 nfsab1 yxy|φ
4 nfv yψ
5 3 4 nfim yxy|φψ
6 nfv xφχ
7 eleq1ab x=yxy|φyy|φ
8 abid yy|φφ
9 7 8 bitrdi x=yxy|φφ
10 9 1 imbi12d x=yxy|φψφχ
11 5 6 10 cbvalv1 xxy|φψyφχ
12 2 11 bitri xy|φψyφχ