Metamath Proof Explorer


Theorem elintrabg

Description: Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007)

Ref Expression
Assertion elintrabg AVAxB|φxBφAx

Proof

Step Hyp Ref Expression
1 eleq1 y=AyxB|φAxB|φ
2 eleq1 y=AyxAx
3 2 imbi2d y=AφyxφAx
4 3 ralbidv y=AxBφyxxBφAx
5 vex yV
6 5 elintrab yxB|φxBφyx
7 1 4 6 vtoclbg AVAxB|φxBφAx