Metamath Proof Explorer


Theorem elmapssresd

Description: A restricted mapping is a mapping. EDITORIAL: Could be used to shorten elpm2r with some reordering involving mapsspm . (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses elmapssresd.1 φABC
elmapssresd.2 φDC
Assertion elmapssresd φADBD

Proof

Step Hyp Ref Expression
1 elmapssresd.1 φABC
2 elmapssresd.2 φDC
3 elmapssres ABCDCADBD
4 1 2 3 syl2anc φADBD