Metamath Proof Explorer


Theorem elom

Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 . (Contributed by NM, 15-May-1994)

Ref Expression
Assertion elom AωAOnxLimxAx

Proof

Step Hyp Ref Expression
1 eleq1 y=AyxAx
2 1 imbi2d y=ALimxyxLimxAx
3 2 albidv y=AxLimxyxxLimxAx
4 df-om ω=yOn|xLimxyx
5 3 4 elrab2 AωAOnxLimxAx