Metamath Proof Explorer


Theorem elopabran

Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabran Axy|xRyψAR

Proof

Step Hyp Ref Expression
1 simpl xRyψxRy
2 1 ssopab2i xy|xRyψxy|xRy
3 opabss xy|xRyR
4 2 3 sstri xy|xRyψR
5 4 sseli Axy|xRyψAR