Metamath Proof Explorer


Theorem elopabrOLD

Description: Obsolete version of elopabr as of 11-Dec-2024. (Contributed by AV, 16-Feb-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elopabrOLD Axy|xRyAR

Proof

Step Hyp Ref Expression
1 elopab Axy|xRyxyA=xyxRy
2 df-br xRyxyR
3 2 biimpi xRyxyR
4 eleq1 A=xyARxyR
5 3 4 imbitrrid A=xyxRyAR
6 5 imp A=xyxRyAR
7 6 exlimivv xyA=xyxRyAR
8 1 7 sylbi Axy|xRyAR