| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elopab |
|- ( A e. { <. x , y >. | x R y } <-> E. x E. y ( A = <. x , y >. /\ x R y ) ) |
| 2 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
| 3 |
2
|
biimpi |
|- ( x R y -> <. x , y >. e. R ) |
| 4 |
|
eleq1 |
|- ( A = <. x , y >. -> ( A e. R <-> <. x , y >. e. R ) ) |
| 5 |
3 4
|
imbitrrid |
|- ( A = <. x , y >. -> ( x R y -> A e. R ) ) |
| 6 |
5
|
imp |
|- ( ( A = <. x , y >. /\ x R y ) -> A e. R ) |
| 7 |
6
|
exlimivv |
|- ( E. x E. y ( A = <. x , y >. /\ x R y ) -> A e. R ) |
| 8 |
1 7
|
sylbi |
|- ( A e. { <. x , y >. | x R y } -> A e. R ) |