Metamath Proof Explorer


Theorem elqsn0

Description: A quotient set does not contain the empty set. (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion elqsn0 domR=ABA/RB

Proof

Step Hyp Ref Expression
1 eqid A/R=A/R
2 neeq1 xR=BxRB
3 eleq2 domR=AxdomRxA
4 3 biimpar domR=AxAxdomR
5 ecdmn0 xdomRxR
6 4 5 sylib domR=AxAxR
7 1 2 6 ectocld domR=ABA/RB