Metamath Proof Explorer


Theorem elrng

Description: Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Assertion elrng AVAranBxxBA

Proof

Step Hyp Ref Expression
1 elrn2g AVAranBxxAB
2 df-br xBAxAB
3 2 exbii xxBAxxAB
4 1 3 bitr4di AVAranBxxBA