Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Rings (extension)
The category of non-unital rings
elrngchom
Next ⟩
rngchomfeqhom
Metamath Proof Explorer
Ascii
Unicode
Theorem
elrngchom
Description:
A morphism of non-unital rings is a function.
(Contributed by
AV
, 27-Feb-2020)
Ref
Expression
Hypotheses
rngcbas.c
⊢
C
=
RngCat
⁡
U
rngcbas.b
⊢
B
=
Base
C
rngcbas.u
⊢
φ
→
U
∈
V
rngchomfval.h
⊢
H
=
Hom
⁡
C
rngchom.x
⊢
φ
→
X
∈
B
rngchom.y
⊢
φ
→
Y
∈
B
Assertion
elrngchom
⊢
φ
→
F
∈
X
H
Y
→
F
:
Base
X
⟶
Base
Y
Proof
Step
Hyp
Ref
Expression
1
rngcbas.c
⊢
C
=
RngCat
⁡
U
2
rngcbas.b
⊢
B
=
Base
C
3
rngcbas.u
⊢
φ
→
U
∈
V
4
rngchomfval.h
⊢
H
=
Hom
⁡
C
5
rngchom.x
⊢
φ
→
X
∈
B
6
rngchom.y
⊢
φ
→
Y
∈
B
7
1
2
3
4
5
6
rngchom
⊢
φ
→
X
H
Y
=
X
RngHomo
Y
8
7
eleq2d
⊢
φ
→
F
∈
X
H
Y
↔
F
∈
X
RngHomo
Y
9
eqid
⊢
Base
X
=
Base
X
10
eqid
⊢
Base
Y
=
Base
Y
11
9
10
rnghmf
⊢
F
∈
X
RngHomo
Y
→
F
:
Base
X
⟶
Base
Y
12
8
11
syl6bi
⊢
φ
→
F
∈
X
H
Y
→
F
:
Base
X
⟶
Base
Y