Metamath Proof Explorer


Theorem elrnressn

Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion elrnressn AVBWBranRAARB

Proof

Step Hyp Ref Expression
1 elrnres BWBranRAxAxRB
2 breq1 x=AxRBARB
3 2 rexsng AVxAxRBARB
4 1 3 sylan9bbr AVBWBranRAARB