Metamath Proof Explorer


Theorem elsymrels3

Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion elsymrels3 RSymRelsxyxRyyRxRRels

Proof

Step Hyp Ref Expression
1 dfsymrels3 SymRels=rRels|xyxryyrx
2 breq r=RxryxRy
3 breq r=RyrxyRx
4 2 3 imbi12d r=RxryyrxxRyyRx
5 4 2albidv r=RxyxryyrxxyxRyyRx
6 1 5 rabeqel RSymRelsxyxRyyRxRRels