Metamath Proof Explorer


Theorem elsymrels4

Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion elsymrels4 RSymRelsR-1=RRRels

Proof

Step Hyp Ref Expression
1 dfsymrels4 SymRels=rRels|r-1=r
2 cnveq r=Rr-1=R-1
3 id r=Rr=R
4 2 3 eqeq12d r=Rr-1=rR-1=R
5 1 4 rabeqel RSymRelsR-1=RRRels