Metamath Proof Explorer


Theorem elsymrels4

Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion elsymrels4 ( 𝑅 ∈ SymRels ↔ ( 𝑅 = 𝑅𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dfsymrels4 SymRels = { 𝑟 ∈ Rels ∣ 𝑟 = 𝑟 }
2 cnveq ( 𝑟 = 𝑅 𝑟 = 𝑅 )
3 id ( 𝑟 = 𝑅𝑟 = 𝑅 )
4 2 3 eqeq12d ( 𝑟 = 𝑅 → ( 𝑟 = 𝑟 𝑅 = 𝑅 ) )
5 1 4 rabeqel ( 𝑅 ∈ SymRels ↔ ( 𝑅 = 𝑅𝑅 ∈ Rels ) )