Description: Element of the class of symmetric relations. (Contributed by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymrels4 | |- ( R e. SymRels <-> ( `' R = R /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsymrels4 | |- SymRels = { r e. Rels | `' r = r } |
|
| 2 | cnveq | |- ( r = R -> `' r = `' R ) |
|
| 3 | id | |- ( r = R -> r = R ) |
|
| 4 | 2 3 | eqeq12d | |- ( r = R -> ( `' r = r <-> `' R = R ) ) |
| 5 | 1 4 | rabeqel | |- ( R e. SymRels <-> ( `' R = R /\ R e. Rels ) ) |