Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfsymrels4 | |- SymRels = { r e. Rels | `' r = r } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsymrels2 | |- SymRels = { r e. Rels | `' r C_ r } |
|
2 | elrelscnveq | |- ( r e. Rels -> ( `' r C_ r <-> `' r = r ) ) |
|
3 | 1 2 | rabimbieq | |- SymRels = { r e. Rels | `' r = r } |