Metamath Proof Explorer


Theorem eltop3

Description: Membership in a topology. (Contributed by NM, 19-Jul-2006)

Ref Expression
Assertion eltop3 JTopAJxxJA=x

Proof

Step Hyp Ref Expression
1 tgtop JToptopGenJ=J
2 1 eleq2d JTopAtopGenJAJ
3 eltg3 JTopAtopGenJxxJA=x
4 2 3 bitr3d JTopAJxxJA=x