Metamath Proof Explorer


Theorem eluzelz2

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis eluzelz2.1 Z=M
Assertion eluzelz2 NZN

Proof

Step Hyp Ref Expression
1 eluzelz2.1 Z=M
2 1 eleq2i NZNM
3 2 biimpi NZNM
4 eluzelz NMN
5 3 4 syl NZN