Metamath Proof Explorer


Theorem eluzelz2d

Description: A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses eluzelz2d.1 Z=M
eluzelz2d.2 φNZ
Assertion eluzelz2d φN

Proof

Step Hyp Ref Expression
1 eluzelz2d.1 Z=M
2 eluzelz2d.2 φNZ
3 1 eluzelz2 NZN
4 2 3 syl φN