Metamath Proof Explorer
		
		
		
		Description:  A member of an upper set of integers is an integer.  (Contributed by Glauco Siliprandi, 23-Oct-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eluzelz2d.1 |  | 
					
						|  |  | eluzelz2d.2 |  | 
				
					|  | Assertion | eluzelz2d |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelz2d.1 |  | 
						
							| 2 |  | eluzelz2d.2 |  | 
						
							| 3 | 1 | eluzelz2 |  | 
						
							| 4 | 2 3 | syl |  |