Description: If any element in B is greater than or equal to an element in A , then the infimum of A is less than or equal to the infimum of B . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infleinf2.x | |
|
infleinf2.p | |
||
infleinf2.a | |
||
infleinf2.b | |
||
infleinf2.y | |
||
Assertion | infleinf2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infleinf2.x | |
|
2 | infleinf2.p | |
|
3 | infleinf2.a | |
|
4 | infleinf2.b | |
|
5 | infleinf2.y | |
|
6 | nfv | |
|
7 | 2 6 | nfan | |
8 | nfv | |
|
9 | 3 | infxrcld | |
10 | 9 | 3ad2ant1 | |
11 | 10 | 3adant1r | |
12 | 3 | sselda | |
13 | 12 | 3adant3 | |
14 | 13 | 3adant1r | |
15 | 4 | sselda | |
16 | 15 | 3ad2ant1 | |
17 | 3 | adantr | |
18 | simpr | |
|
19 | infxrlb | |
|
20 | 17 18 19 | syl2anc | |
21 | 20 | 3adant3 | |
22 | 21 | 3adant1r | |
23 | simp3 | |
|
24 | 11 14 16 22 23 | xrletrd | |
25 | 24 | 3exp | |
26 | 7 8 25 | rexlimd | |
27 | 5 26 | mpd | |
28 | 1 27 | ralrimia | |
29 | infxrgelb | |
|
30 | 4 9 29 | syl2anc | |
31 | 28 30 | mpbird | |