Metamath Proof Explorer


Theorem infleinf2

Description: If any element in B is greater than or equal to an element in A , then the infimum of A is less than or equal to the infimum of B . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infleinf2.x xφ
infleinf2.p yφ
infleinf2.a φA*
infleinf2.b φB*
infleinf2.y φxByAyx
Assertion infleinf2 φsupA*<supB*<

Proof

Step Hyp Ref Expression
1 infleinf2.x xφ
2 infleinf2.p yφ
3 infleinf2.a φA*
4 infleinf2.b φB*
5 infleinf2.y φxByAyx
6 nfv yxB
7 2 6 nfan yφxB
8 nfv ysupA*<x
9 3 infxrcld φsupA*<*
10 9 3ad2ant1 φyAyxsupA*<*
11 10 3adant1r φxByAyxsupA*<*
12 3 sselda φyAy*
13 12 3adant3 φyAyxy*
14 13 3adant1r φxByAyxy*
15 4 sselda φxBx*
16 15 3ad2ant1 φxByAyxx*
17 3 adantr φyAA*
18 simpr φyAyA
19 infxrlb A*yAsupA*<y
20 17 18 19 syl2anc φyAsupA*<y
21 20 3adant3 φyAyxsupA*<y
22 21 3adant1r φxByAyxsupA*<y
23 simp3 φxByAyxyx
24 11 14 16 22 23 xrletrd φxByAyxsupA*<x
25 24 3exp φxByAyxsupA*<x
26 7 8 25 rexlimd φxByAyxsupA*<x
27 5 26 mpd φxBsupA*<x
28 1 27 ralrimia φxBsupA*<x
29 infxrgelb B*supA*<*supA*<supB*<xBsupA*<x
30 4 9 29 syl2anc φsupA*<supB*<xBsupA*<x
31 28 30 mpbird φsupA*<supB*<