Metamath Proof Explorer


Theorem elxpcbasex1ALT

Description: Alternate proof of elxpcbasex1 . (Contributed by Zhi Wang, 8-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses elxpcbasex1.t T = C × c D
elxpcbasex1.b B = Base T
elxpcbasex1.x φ X B
Assertion elxpcbasex1ALT φ C V

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t T = C × c D
2 elxpcbasex1.b B = Base T
3 elxpcbasex1.x φ X B
4 eqid Base C = Base C
5 eqid Base D = Base D
6 1 4 5 xpcbas Base C × Base D = Base T
7 2 6 eqtr4i B = Base C × Base D
8 3 7 eleqtrdi φ X Base C × Base D
9 xp1st X Base C × Base D 1 st X Base C
10 8 9 syl φ 1 st X Base C
11 10 elfvexd φ C V