Metamath Proof Explorer


Theorem elxpcbasex1ALT

Description: Alternate proof of elxpcbasex1 . (Contributed by Zhi Wang, 8-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses elxpcbasex1.t
|- T = ( C Xc. D )
elxpcbasex1.b
|- B = ( Base ` T )
elxpcbasex1.x
|- ( ph -> X e. B )
Assertion elxpcbasex1ALT
|- ( ph -> C e. _V )

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t
 |-  T = ( C Xc. D )
2 elxpcbasex1.b
 |-  B = ( Base ` T )
3 elxpcbasex1.x
 |-  ( ph -> X e. B )
4 eqid
 |-  ( Base ` C ) = ( Base ` C )
5 eqid
 |-  ( Base ` D ) = ( Base ` D )
6 1 4 5 xpcbas
 |-  ( ( Base ` C ) X. ( Base ` D ) ) = ( Base ` T )
7 2 6 eqtr4i
 |-  B = ( ( Base ` C ) X. ( Base ` D ) )
8 3 7 eleqtrdi
 |-  ( ph -> X e. ( ( Base ` C ) X. ( Base ` D ) ) )
9 xp1st
 |-  ( X e. ( ( Base ` C ) X. ( Base ` D ) ) -> ( 1st ` X ) e. ( Base ` C ) )
10 8 9 syl
 |-  ( ph -> ( 1st ` X ) e. ( Base ` C ) )
11 10 elfvexd
 |-  ( ph -> C e. _V )