Metamath Proof Explorer


Theorem empty

Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024)

Ref Expression
Assertion empty ¬ x x

Proof

Step Hyp Ref Expression
1 df-fal ¬
2 1 albii x x ¬
3 alnex x ¬ ¬ x
4 2 3 bitr2i ¬ x x