Metamath Proof Explorer
Description: Two characterizations of the empty domain. (Contributed by Gérard
Lang, 5-Feb-2024)
|
|
Ref |
Expression |
|
Assertion |
empty |
⊢ ( ¬ ∃ 𝑥 ⊤ ↔ ∀ 𝑥 ⊥ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-fal |
⊢ ( ⊥ ↔ ¬ ⊤ ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 ⊥ ↔ ∀ 𝑥 ¬ ⊤ ) |
3 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ ⊤ ↔ ¬ ∃ 𝑥 ⊤ ) |
4 |
2 3
|
bitr2i |
⊢ ( ¬ ∃ 𝑥 ⊤ ↔ ∀ 𝑥 ⊥ ) |