Metamath Proof Explorer


Theorem empty

Description: Two characterizations of the empty domain. (Contributed by Gérard Lang, 5-Feb-2024)

Ref Expression
Assertion empty ( ¬ ∃ 𝑥 ⊤ ↔ ∀ 𝑥 ⊥ )

Proof

Step Hyp Ref Expression
1 df-fal ( ⊥ ↔ ¬ ⊤ )
2 1 albii ( ∀ 𝑥 ⊥ ↔ ∀ 𝑥 ¬ ⊤ )
3 alnex ( ∀ 𝑥 ¬ ⊤ ↔ ¬ ∃ 𝑥 ⊤ )
4 2 3 bitr2i ( ¬ ∃ 𝑥 ⊤ ↔ ∀ 𝑥 ⊥ )