Metamath Proof Explorer
		
		
		
		Description:  On the empty domain, any existentially quantified formula is false.
     (Contributed by Wolf Lammen, 21-Jan-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | emptyex | ⊢  ( ¬  ∃ 𝑥 ⊤  →  ¬  ∃ 𝑥 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trud | ⊢ ( 𝜑  →  ⊤ ) | 
						
							| 2 | 1 | eximi | ⊢ ( ∃ 𝑥 𝜑  →  ∃ 𝑥 ⊤ ) | 
						
							| 3 | 2 | con3i | ⊢ ( ¬  ∃ 𝑥 ⊤  →  ¬  ∃ 𝑥 𝜑 ) |