Metamath Proof Explorer


Theorem emptyex

Description: On the empty domain, any existentially quantified formula is false. (Contributed by Wolf Lammen, 21-Jan-2024)

Ref Expression
Assertion emptyex ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 trud ( 𝜑 → ⊤ )
2 1 eximi ( ∃ 𝑥 𝜑 → ∃ 𝑥 ⊤ )
3 2 con3i ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 𝜑 )