Metamath Proof Explorer
Description: On the empty domain, any existentially quantified formula is false.
(Contributed by Wolf Lammen, 21-Jan-2024)
|
|
Ref |
Expression |
|
Assertion |
emptyex |
⊢ ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
trud |
⊢ ( 𝜑 → ⊤ ) |
2 |
1
|
eximi |
⊢ ( ∃ 𝑥 𝜑 → ∃ 𝑥 ⊤ ) |
3 |
2
|
con3i |
⊢ ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 𝜑 ) |