Metamath Proof Explorer
Description: On the empty domain, any universally quantified formula is true.
(Contributed by Wolf Lammen, 12-Mar-2023)
|
|
Ref |
Expression |
|
Assertion |
emptyal |
⊢ ( ¬ ∃ 𝑥 ⊤ → ∀ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
emptyex |
⊢ ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 ¬ 𝜑 ) |
2 |
|
alex |
⊢ ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 ) |
3 |
1 2
|
sylibr |
⊢ ( ¬ ∃ 𝑥 ⊤ → ∀ 𝑥 𝜑 ) |