Metamath Proof Explorer
		
		
		
		Description:  On the empty domain, any universally quantified formula is true.
     (Contributed by Wolf Lammen, 12-Mar-2023)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | emptyal | ⊢  ( ¬  ∃ 𝑥 ⊤  →  ∀ 𝑥 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | emptyex | ⊢ ( ¬  ∃ 𝑥 ⊤  →  ¬  ∃ 𝑥 ¬  𝜑 ) | 
						
							| 2 |  | alex | ⊢ ( ∀ 𝑥 𝜑  ↔  ¬  ∃ 𝑥 ¬  𝜑 ) | 
						
							| 3 | 1 2 | sylibr | ⊢ ( ¬  ∃ 𝑥 ⊤  →  ∀ 𝑥 𝜑 ) |