Metamath Proof Explorer


Theorem emptyal

Description: On the empty domain, any universally quantified formula is true. (Contributed by Wolf Lammen, 12-Mar-2023)

Ref Expression
Assertion emptyal ( ¬ ∃ 𝑥 ⊤ → ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 emptyex ( ¬ ∃ 𝑥 ⊤ → ¬ ∃ 𝑥 ¬ 𝜑 )
2 alex ( ∀ 𝑥 𝜑 ↔ ¬ ∃ 𝑥 ¬ 𝜑 )
3 1 2 sylibr ( ¬ ∃ 𝑥 ⊤ → ∀ 𝑥 𝜑 )