Metamath Proof Explorer


Theorem emptynf

Description: On the empty domain, any variable is effectively nonfree in any formula. (Contributed by Wolf Lammen, 12-Mar-2023)

Ref Expression
Assertion emptynf ¬ x x φ

Proof

Step Hyp Ref Expression
1 emptyal ¬ x x φ
2 nftht x φ x φ
3 1 2 syl ¬ x x φ