Metamath Proof Explorer


Theorem emptynf

Description: On the empty domain, any variable is effectively nonfree in any formula. (Contributed by Wolf Lammen, 12-Mar-2023)

Ref Expression
Assertion emptynf ¬xxφ

Proof

Step Hyp Ref Expression
1 emptyal ¬xxφ
2 nftht xφxφ
3 1 2 syl ¬xxφ