Metamath Proof Explorer


Theorem en3

Description: A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion en3 A3𝑜xyzA=xyz

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 1 onordi Ord2𝑜
3 df-3o 3𝑜=suc2𝑜
4 en2 Ax2𝑜yzAx=yz
5 tpass xyz=xyz
6 5 enp1ilem xAAx=yzA=xyz
7 6 2eximdv xAyzAx=yzyzA=xyz
8 2 3 4 7 enp1i A3𝑜xyzA=xyz