Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Equinumerosity enpr2d  
				
		 
		
			
		 
		Description:   A pair with distinct elements is equinumerous to ordinal two.
       (Contributed by Rohan Ridenour , 3-Aug-2023)   Avoid ax-un  .  (Revised by BTernaryTau , 23-Dec-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						enpr2d.1    ⊢   φ   →   A  ∈  C         
					 
					
						enpr2d.2    ⊢   φ   →   B  ∈  D         
					 
					
						enpr2d.3    ⊢   φ   →   ¬   A  =  B           
					 
				
					Assertion 
					enpr2d    ⊢   φ   →   A  B    ≈   2  𝑜        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							enpr2d.1   ⊢   φ   →   A  ∈  C         
						
							2 
								
							 
							enpr2d.2   ⊢   φ   →   B  ∈  D         
						
							3 
								
							 
							enpr2d.3   ⊢   φ   →   ¬   A  =  B           
						
							4 
								
							 
							0ex  ⊢   ∅  ∈  V       
						
							5 
								4 
							 
							a1i   ⊢   φ   →   ∅  ∈  V         
						
							6 
								
							 
							1oex  ⊢    1  𝑜    ∈  V       
						
							7 
								6 
							 
							a1i   ⊢   φ   →    1  𝑜    ∈  V         
						
							8 
								3 
							 
							neqned   ⊢   φ   →   A  ≠  B         
						
							9 
								
							 
							1n0  ⊢    1  𝑜    ≠  ∅       
						
							10 
								9 
							 
							necomi  ⊢   ∅  ≠   1  𝑜         
						
							11 
								10 
							 
							a1i   ⊢   φ   →   ∅  ≠   1  𝑜           
						
							12 
								1  2  5  7  8  11 
							 
							en2prd   ⊢   φ   →   A  B    ≈   ∅   1  𝑜          
						
							13 
								
							 
							df2o3  ⊢    2  𝑜    =   ∅   1  𝑜           
						
							14 
								12  13 
							 
							breqtrrdi   ⊢   φ   →   A  B    ≈   2  𝑜