Metamath Proof Explorer


Theorem en2prd

Description: Two unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024)

Ref Expression
Hypotheses en2prd.1 φAV
en2prd.2 φBW
en2prd.3 φCX
en2prd.4 φDY
en2prd.5 φAB
en2prd.6 φCD
Assertion en2prd φABCD

Proof

Step Hyp Ref Expression
1 en2prd.1 φAV
2 en2prd.2 φBW
3 en2prd.3 φCX
4 en2prd.4 φDY
5 en2prd.5 φAB
6 en2prd.6 φCD
7 prex ACBDV
8 f1oprg AVCXBWDYABCDACBD:AB1-1 ontoCD
9 1 3 2 4 8 syl22anc φABCDACBD:AB1-1 ontoCD
10 5 6 9 mp2and φACBD:AB1-1 ontoCD
11 f1oeq1 f=ACBDf:AB1-1 ontoCDACBD:AB1-1 ontoCD
12 11 spcegv ACBDVACBD:AB1-1 ontoCDff:AB1-1 ontoCD
13 7 10 12 mpsyl φff:AB1-1 ontoCD
14 prex ABV
15 prex CDV
16 breng ABVCDVABCDff:AB1-1 ontoCD
17 14 15 16 mp2an ABCDff:AB1-1 ontoCD
18 13 17 sylibr φABCD