Step |
Hyp |
Ref |
Expression |
1 |
|
enpr2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
2 |
|
enpr2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
3 |
|
enpr2d.3 |
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
4 |
|
ensn1g |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 } ≈ 1o ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → { 𝐴 } ≈ 1o ) |
6 |
|
1on |
⊢ 1o ∈ On |
7 |
|
en2sn |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 1o ∈ On ) → { 𝐵 } ≈ { 1o } ) |
8 |
2 6 7
|
sylancl |
⊢ ( 𝜑 → { 𝐵 } ≈ { 1o } ) |
9 |
3
|
neqned |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
10 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
12 |
6
|
onirri |
⊢ ¬ 1o ∈ 1o |
13 |
12
|
a1i |
⊢ ( 𝜑 → ¬ 1o ∈ 1o ) |
14 |
|
disjsn |
⊢ ( ( 1o ∩ { 1o } ) = ∅ ↔ ¬ 1o ∈ 1o ) |
15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ( 1o ∩ { 1o } ) = ∅ ) |
16 |
|
unen |
⊢ ( ( ( { 𝐴 } ≈ 1o ∧ { 𝐵 } ≈ { 1o } ) ∧ ( ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ∧ ( 1o ∩ { 1o } ) = ∅ ) ) → ( { 𝐴 } ∪ { 𝐵 } ) ≈ ( 1o ∪ { 1o } ) ) |
17 |
5 8 11 15 16
|
syl22anc |
⊢ ( 𝜑 → ( { 𝐴 } ∪ { 𝐵 } ) ≈ ( 1o ∪ { 1o } ) ) |
18 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
19 |
|
df-suc |
⊢ suc 1o = ( 1o ∪ { 1o } ) |
20 |
17 18 19
|
3brtr4g |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ suc 1o ) |
21 |
|
df-2o |
⊢ 2o = suc 1o |
22 |
20 21
|
breqtrrdi |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ≈ 2o ) |