Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - add the Axiom of Union  
				Equinumerosity  
				enpr2d  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   A pair with distinct elements is equinumerous to ordinal two.
       (Contributed by Rohan Ridenour , 3-Aug-2023)   Avoid ax-un  .  (Revised by BTernaryTau , 23-Dec-2024) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						enpr2d.1  
						⊢  ( 𝜑   →  𝐴   ∈  𝐶  )  
					 
					
						 
						 
						enpr2d.2  
						⊢  ( 𝜑   →  𝐵   ∈  𝐷  )  
					 
					
						 
						 
						enpr2d.3  
						⊢  ( 𝜑   →  ¬  𝐴   =  𝐵  )  
					 
				
					 
					Assertion 
					enpr2d  
					⊢   ( 𝜑   →  { 𝐴  ,  𝐵  }  ≈  2o  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							enpr2d.1  
							⊢  ( 𝜑   →  𝐴   ∈  𝐶  )  
						 
						
							2  
							
								
							 
							enpr2d.2  
							⊢  ( 𝜑   →  𝐵   ∈  𝐷  )  
						 
						
							3  
							
								
							 
							enpr2d.3  
							⊢  ( 𝜑   →  ¬  𝐴   =  𝐵  )  
						 
						
							4  
							
								
							 
							0ex  
							⊢  ∅  ∈  V  
						 
						
							5  
							
								4 
							 
							a1i  
							⊢  ( 𝜑   →  ∅  ∈  V )  
						 
						
							6  
							
								
							 
							1oex  
							⊢  1o   ∈  V  
						 
						
							7  
							
								6 
							 
							a1i  
							⊢  ( 𝜑   →  1o   ∈  V )  
						 
						
							8  
							
								3 
							 
							neqned  
							⊢  ( 𝜑   →  𝐴   ≠  𝐵  )  
						 
						
							9  
							
								
							 
							1n0  
							⊢  1o   ≠  ∅  
						 
						
							10  
							
								9 
							 
							necomi  
							⊢  ∅  ≠  1o   
						 
						
							11  
							
								10 
							 
							a1i  
							⊢  ( 𝜑   →  ∅  ≠  1o  )  
						 
						
							12  
							
								1  2  5  7  8  11 
							 
							en2prd  
							⊢  ( 𝜑   →  { 𝐴  ,  𝐵  }  ≈  { ∅ ,  1o  } )  
						 
						
							13  
							
								
							 
							df2o3  
							⊢  2o   =  { ∅ ,  1o  }  
						 
						
							14  
							
								12  13 
							 
							breqtrrdi  
							⊢  ( 𝜑   →  { 𝐴  ,  𝐵  }  ≈  2o  )